\(\int \frac {\sqrt {a-b x^2}}{\sqrt {a^2-b^2 x^4}} \, dx\) [207]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 29, antiderivative size = 64 \[ \int \frac {\sqrt {a-b x^2}}{\sqrt {a^2-b^2 x^4}} \, dx=\frac {\sqrt {a-b x^2} \sqrt {a+b x^2} \text {arctanh}\left (\frac {\sqrt {b} x}{\sqrt {a+b x^2}}\right )}{\sqrt {b} \sqrt {a^2-b^2 x^4}} \]

[Out]

arctanh(x*b^(1/2)/(b*x^2+a)^(1/2))*(-b*x^2+a)^(1/2)*(b*x^2+a)^(1/2)/b^(1/2)/(-b^2*x^4+a^2)^(1/2)

Rubi [A] (verified)

Time = 0.02 (sec) , antiderivative size = 64, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.103, Rules used = {1166, 223, 212} \[ \int \frac {\sqrt {a-b x^2}}{\sqrt {a^2-b^2 x^4}} \, dx=\frac {\sqrt {a-b x^2} \sqrt {a+b x^2} \text {arctanh}\left (\frac {\sqrt {b} x}{\sqrt {a+b x^2}}\right )}{\sqrt {b} \sqrt {a^2-b^2 x^4}} \]

[In]

Int[Sqrt[a - b*x^2]/Sqrt[a^2 - b^2*x^4],x]

[Out]

(Sqrt[a - b*x^2]*Sqrt[a + b*x^2]*ArcTanh[(Sqrt[b]*x)/Sqrt[a + b*x^2]])/(Sqrt[b]*Sqrt[a^2 - b^2*x^4])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 1166

Int[((d_) + (e_.)*(x_)^2)^(q_)*((a_) + (c_.)*(x_)^4)^(p_), x_Symbol] :> Dist[(a + c*x^4)^FracPart[p]/((d + e*x
^2)^FracPart[p]*(a/d + c*(x^2/e))^FracPart[p]), Int[(d + e*x^2)^(p + q)*(a/d + (c/e)*x^2)^p, x], x] /; FreeQ[{
a, c, d, e, p, q}, x] && EqQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[p]

Rubi steps \begin{align*} \text {integral}& = \frac {\left (\sqrt {a-b x^2} \sqrt {a+b x^2}\right ) \int \frac {1}{\sqrt {a+b x^2}} \, dx}{\sqrt {a^2-b^2 x^4}} \\ & = \frac {\left (\sqrt {a-b x^2} \sqrt {a+b x^2}\right ) \text {Subst}\left (\int \frac {1}{1-b x^2} \, dx,x,\frac {x}{\sqrt {a+b x^2}}\right )}{\sqrt {a^2-b^2 x^4}} \\ & = \frac {\sqrt {a-b x^2} \sqrt {a+b x^2} \tanh ^{-1}\left (\frac {\sqrt {b} x}{\sqrt {a+b x^2}}\right )}{\sqrt {b} \sqrt {a^2-b^2 x^4}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.93 (sec) , antiderivative size = 67, normalized size of antiderivative = 1.05 \[ \int \frac {\sqrt {a-b x^2}}{\sqrt {a^2-b^2 x^4}} \, dx=\frac {-\log \left (-a+b x^2\right )+\log \left (a b x-b^2 x^3+\sqrt {b} \sqrt {a-b x^2} \sqrt {a^2-b^2 x^4}\right )}{\sqrt {b}} \]

[In]

Integrate[Sqrt[a - b*x^2]/Sqrt[a^2 - b^2*x^4],x]

[Out]

(-Log[-a + b*x^2] + Log[a*b*x - b^2*x^3 + Sqrt[b]*Sqrt[a - b*x^2]*Sqrt[a^2 - b^2*x^4]])/Sqrt[b]

Maple [A] (verified)

Time = 0.23 (sec) , antiderivative size = 54, normalized size of antiderivative = 0.84

method result size
default \(\frac {\sqrt {-b^{2} x^{4}+a^{2}}\, \ln \left (\sqrt {b}\, x +\sqrt {b \,x^{2}+a}\right )}{\sqrt {-b \,x^{2}+a}\, \sqrt {b \,x^{2}+a}\, \sqrt {b}}\) \(54\)

[In]

int((-b*x^2+a)^(1/2)/(-b^2*x^4+a^2)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/(-b*x^2+a)^(1/2)*(-b^2*x^4+a^2)^(1/2)/(b*x^2+a)^(1/2)*ln(b^(1/2)*x+(b*x^2+a)^(1/2))/b^(1/2)

Fricas [A] (verification not implemented)

none

Time = 0.26 (sec) , antiderivative size = 125, normalized size of antiderivative = 1.95 \[ \int \frac {\sqrt {a-b x^2}}{\sqrt {a^2-b^2 x^4}} \, dx=\left [\frac {\log \left (\frac {2 \, b^{2} x^{4} - a b x^{2} - 2 \, \sqrt {-b^{2} x^{4} + a^{2}} \sqrt {-b x^{2} + a} \sqrt {b} x - a^{2}}{b x^{2} - a}\right )}{2 \, \sqrt {b}}, \frac {\sqrt {-b} \arctan \left (\frac {\sqrt {-b^{2} x^{4} + a^{2}} \sqrt {-b x^{2} + a} \sqrt {-b}}{b^{2} x^{3} - a b x}\right )}{b}\right ] \]

[In]

integrate((-b*x^2+a)^(1/2)/(-b^2*x^4+a^2)^(1/2),x, algorithm="fricas")

[Out]

[1/2*log((2*b^2*x^4 - a*b*x^2 - 2*sqrt(-b^2*x^4 + a^2)*sqrt(-b*x^2 + a)*sqrt(b)*x - a^2)/(b*x^2 - a))/sqrt(b),
 sqrt(-b)*arctan(sqrt(-b^2*x^4 + a^2)*sqrt(-b*x^2 + a)*sqrt(-b)/(b^2*x^3 - a*b*x))/b]

Sympy [F]

\[ \int \frac {\sqrt {a-b x^2}}{\sqrt {a^2-b^2 x^4}} \, dx=\int \frac {\sqrt {a - b x^{2}}}{\sqrt {- \left (- a + b x^{2}\right ) \left (a + b x^{2}\right )}}\, dx \]

[In]

integrate((-b*x**2+a)**(1/2)/(-b**2*x**4+a**2)**(1/2),x)

[Out]

Integral(sqrt(a - b*x**2)/sqrt(-(-a + b*x**2)*(a + b*x**2)), x)

Maxima [F]

\[ \int \frac {\sqrt {a-b x^2}}{\sqrt {a^2-b^2 x^4}} \, dx=\int { \frac {\sqrt {-b x^{2} + a}}{\sqrt {-b^{2} x^{4} + a^{2}}} \,d x } \]

[In]

integrate((-b*x^2+a)^(1/2)/(-b^2*x^4+a^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(-b*x^2 + a)/sqrt(-b^2*x^4 + a^2), x)

Giac [F]

\[ \int \frac {\sqrt {a-b x^2}}{\sqrt {a^2-b^2 x^4}} \, dx=\int { \frac {\sqrt {-b x^{2} + a}}{\sqrt {-b^{2} x^{4} + a^{2}}} \,d x } \]

[In]

integrate((-b*x^2+a)^(1/2)/(-b^2*x^4+a^2)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(-b*x^2 + a)/sqrt(-b^2*x^4 + a^2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {a-b x^2}}{\sqrt {a^2-b^2 x^4}} \, dx=\int \frac {\sqrt {a-b\,x^2}}{\sqrt {a^2-b^2\,x^4}} \,d x \]

[In]

int((a - b*x^2)^(1/2)/(a^2 - b^2*x^4)^(1/2),x)

[Out]

int((a - b*x^2)^(1/2)/(a^2 - b^2*x^4)^(1/2), x)